Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
نویسندگان
چکیده
DHFR (dihydrofolate reductase) catalyses the metabolically important reduction of 7,8-dihydrofolate by NADPH. DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR), which shares similarity with DHFR from Escherichia coli, has previously been characterized structurally. Its tertiary structure is similar to that of DHFR from E. coli but it is the only DHFR characterized so far that relies on dimerization for stability. The midpoint of the thermal unfolding of TmDHFR was at approx. 83 degrees C, which was 30 degrees C higher than the melting temperature of DHFR from E. coli. The turnover and the hydride-transfer rates in the kinetic scheme of TmDHFR were derived from measurements of the steady-state and pre-steady-state kinetics using absorbance and stopped-flow fluorescence spectroscopy. The rate constant for hydride transfer was found to depend strongly on the temperature and the pH of the solution. Hydride transfer was slow (0.14 s(-1) at 25 degrees C) and at least partially rate limiting at low temperatures but increased dramatically with temperature. At 80 degrees C the hydride-transfer rate of TmDHFR was 20 times lower than that observed for the E. coli enzyme at its physiological temperature. Hydride transfer depended on ionization of a single group in the active site with a p K(a) of 6.0. While at 30 degrees C, turnover of substrate by TmDHFR was almost two orders of magnitude slower than by DHFR from E. coli; the steady-state rates of the two enzymes differed only 8-fold at their respective working temperatures.
منابع مشابه
Different Dynamical Effects in Mesophilic and Hyperthermophilic Dihydrofolate Reductases
The role of protein dynamics in the reaction catalyzed by dihydrofolate reductase from the hyperthermophile Thermotoga maritima (TmDHFR) has been examined by enzyme isotope substitution ((15)N, (13)C, (2)H). In contrast to all other enzyme reactions investigated previously, including DHFR from Escherichia coli (EcDHFR), for which isotopic substitution led to decreased reactivity, the rate const...
متن کاملA Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis.
Protein flexibility is central to enzyme catalysis, yet it remains challenging both to predict conformational behavior on the basis of analysis of amino acid sequence and protein structure and to provide the necessary breadth of experimental support to any such predictions. Here a generic and rapid procedure for identifying conformational changes during dihydrofolate reductase (DHFR) catalysis ...
متن کاملReduction of Folate by Dihydrofolate Reductase from Thermotoga maritima.
Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an e...
متن کاملImportance of a hydrophobic residue in binding and catalysis by dihydrofolate reductase.
A conserved residue at the dihydrofolate binding site of dihydrofolate reductase (EC 1.5.1.3), leucine-54, was replaced with glycine to ascertain the role of this hydrophobic amino acid. The effect of the mutation is both to increase the dissociation rate of dihydrofolate and decrease the rate of hydride transfer thus changing the rate-limiting step in catalysis from product loss (leucine-54) t...
متن کاملThe Role of Large-Scale Motions in Catalysis by Dihydrofolate Reductase
Dihydrofolate reductase has long been used as a model system to study the coupling of protein motions to enzymatic hydride transfer. By studying environmental effects on hydride transfer in dihydrofolate reductase (DHFR) from the cold-adapted bacterium Moritella profunda (MpDHFR) and comparing the flexibility of this enzyme to that of DHFR from Escherichia coli (EcDHFR), we demonstrate that fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 374 Pt 2 شماره
صفحات -
تاریخ انتشار 2003